UNCERTAIN1 **CONTACT ANGLE FSTIMATES** FROM A WILHEMY TENSIOMETER

INTRODUCTION

When measuring contact angles (θ) with a tensiometer, how much uncertainty is there in the estimate?

OBJECTIVE

Determine the uncertainty in the estimates of θ from a Wilhelmy tensiometer across the full range of wettability

ANALYSIS

Contact angle (θ) from solid perimeter (p), liquid surface tension (γ) and from the force measured by tensiometer (f),

$$\theta = ArcCos\left(\frac{f}{p\gamma}\right)$$

Estimate uncertainty in contact angles ($\delta \theta$) using standard error propagation techniques,

 $\delta\theta = \left[\left(\frac{\partial\theta}{\partial f}\right)^2 \left(\delta f\right)^2 + \left(\frac{\partial\theta}{\partial p}\right)^2 \left(\delta p\right)^2 + \left(\frac{\partial\theta}{\partial \gamma}\right)^2 \left(\delta \gamma\right)^2 \right]^{1/2}$

where absolute uncertainties are δf , δp and $\delta \gamma$ and corresponding relative uncertainties are

Insert partial derivatives and rearrange terms

 $\delta\theta = \frac{f/p\gamma}{\left[1 - (f/p\gamma)^2\right]^{1/2}} \left(\Delta_f^2 + \Delta_p^2 + \Delta_\gamma^2\right)^{1/2}$

Replace the $f/p\gamma$ terms with $cos\theta$

 $\delta\theta = \pm \cot\theta \cdot \left(\Delta_{f}^{2} + \Delta_{p}^{2} + \Delta_{\gamma}^{2}\right)^{1/2}$

Chuck Extrand, PhD Director of Research - CPC St. Paul, MN 55114, USA chuck.extrand@cpcworldwide.com +1-651-999-1859

RESULTS

More general result

More correct result

CONCLUSION Uncertainty in θ from the Wilhelmy tensiometer: Small in the middle of the range Increases asymptotically at the extremes